Published 30 October 2024
By researcher Fredrik Dahl Bråten and Head of R&D Geir Linløkken.
Many investors may be tempted to buy stocks with large and rapid price fluctuations. But such stocks can also have high downside potential and risk. The most volatile stocks, often called lottery-type stocks or lotto stocks, have historically performed much worse than other stocks, according to Investtech's research. It has been statistically beneficial to avoid such stocks, or possibly to short them. This applies especially to technically negative lotto stocks, but also when they have been technically positive.
The chart below shows average price development following sell signals from a negative trend in Investtech's medium-term price charts for stocks with over 40 per cent monthly price fluctuations. These are lotto stocks in a falling trend, breaking downwards from a falling trend, or breaking downwards from a horizontal trend. The signals are triggered on day 0, and we have observed the development up to 66 days later. Only days when the stock market is open are included, so 66 days correspond to approximately three months. The thick red curve shows how stocks with sell signals developed. The shaded area indicates the standard deviation of the calculations. The narrow black curve shows how the benchmark index developed during the same period that we measured the performance of stocks with sell signals. A total of 4,443 signals were identified during the time period. This provides a solid statistical basis.
Similarly, the chart below shows return for buy signals from stocks with positive trend development and over 40 per cent monthly price fluctuations. These are lotto stocks in a rising trend, breaking upwards from a rising trend, or breaking upwards from a horizontal trend. A total of 4,927 signals were identified during the period, providing a solid statistical basis.
We observe that stocks in a falling trend (sell signal) have decreased in the subsequent period. The decline has been fairly steady over the entire three-month period and has clearly been weaker than benchmark, which has risen in the same period. After 66 days, the sell signals have on average fallen by 3.30 per cent, while the benchmark index in the same period has risen by an average of 4.20 per cent. This results in an average underperformance of 7.50 percentage points after 66 days. The lotto stocks with buy signals performed somewhat better, rising by an average of 1.85 per cent after 66 days. However, benchmark rose by 4.48 per cent in the period, resulting in an underperformance of 2.65 percentage points.
Converted to annualized figures, stocks with sell and buy signals have, on average, provided 25.7 and 9.7 percentage points of underperformance vs benchmark, respectively. This is based on 4,443 buy signals and 4,927 sell signals in the Nordic region during the period 2008-2023.
The table below shows annualized return based on 66-day figures for the Nordic markets, as well as a weighted average for the Nordic markets combined.
Annualized return (based on 66-day figures) | Norway | Sweden | Denmark | Finland | Weighted average |
Sell signal | -13.3 % | -10.7 % | -25.4 % | 19.6 % | -12.0 % |
Benchmark in same period | 14.6 % | 12.7 % | 16.0 % | 21.0 % | 13.7 % |
Excess return sell signal | -28.0 %p | -23.4 %p | -41.5 %p | -1.4 %p | -25.7 %p |
Buy signal | 25.1 % | -1.8 % | -14.4 % | 40.2 % | 7.3 % |
Benchmark in same period | 18.0 % | 16.2 % | 17.8 % | 19.0 % | 16.9 % |
Excess return buy signal | 7.2 %p | -18.0 %p | -32.2 %p | 21.2 %p | -9.7 %p |
%p = percentage points, meaning the difference in percentage returns. Annualized figures are calculated by repeating the 66-day figures over a year, assuming an average year has 252 trading days.
The same pattern is reflected in other buy and sell signals for stocks with extreme volatility.
Among the sell signals, we see that stocks breaking downwards through support have statistically produced an underperformance of 22.9 percentage points, stocks with a technical score below -50 have resulted in an underperformance of 24.8 percentage points, and stocks with RSI21 below 40 have shown an underperformance of 22.9 percentage points.
For buy signals, stocks breaking upwards through resistance resulted in an annualized underperformance of 13.3 percentage points, RSI21 above 60 led to an underperformance of 12.7 percentage points, and a technical score above 50 resulted in an underperformance of 14.4 percentage points.
In the period 2008-2023, stocks with extreme volatility have performed poorly, both following buy signals and especially after sell signals. During the 16-year period, we observed an underperformance of 25.7 percentage points after sell signals and 9.7 percentage points after buy signals on an annual basis. The risk in companies with over 40 percent monthly price fluctuations is extreme. Given that returns have statistically been weak, regardless of technical signals, it is considered a solid foundation in technically and quantitatively based investment strategies to completely avoid such stocks.
It is very easy to avoid stocks with extreme volatility. These are marked with a warning triangle and the text "Extreme Volatility" on Investtech's pages. Also, see information about the stock's volatility further down on the stock's analysis pages. If the stock fluctuates significantly on a monthly basis, 40 per cent or more, it is classified as a lotto stock. Our 2021 article on the 20 and 10 per cent most volatile stocks also showed that highly volatile stocks statistically delivered weaker returns over time compared to less volatile stocks. Lotto stocks are a subgroup of the 10 per cent most volatile stocks.
For an overview of stocks with extreme volatility, see Investtech's stock selection tool.
Data
All publicly listed stocks in Norway, Sweden, Denmark, and Finland with a daily turnover higher than 1.0 million NOK or the equivalent in SEK, DKK, or EUR. For the Nordic markets combined, we used the four largest Nordic countries, i.e. Sweden, Denmark, Norway, and Finland, as the data basis.
All signals identified during the period from 01.01.2021 to 31.12.2023 are included, including from stocks that were later delisted from the stock exchange due to, for example, acquisitions or bankruptcy. Return is calculated from the day after the signal date and 66 days forward, until approximately 31.03.2024 for the last identified signals.
Adjustment for dividends and other corporate actions
All stock prices are adjusted for dividends, splits, and other capital changes, so the price development reflects the real price movements for investors as accurately as possible.
How signals are identified
Investtech’s algorithms generate analyses for all listed stocks every day after the stock exchange closes. The algorithms automatically identify trends, support and resistance levels, chart formations, volume patterns, and a number of other technical signals and indicators. The signals are identified completely automatically based on these.
Sampling frequency
Indicators, for example a rising trend and high RSI, can appear for several consecutive days. For a new signal to be identified, at least 14 trading days must have passed since the previous signal in the same direction.
A sampling frequency shorter than the measurement period for return results in overlapping samples. In addition to different stocks correlating with each other, this means that caution is advised when considering robustness based on standard deviation. Nevertheless, we have plotted standard deviation in the charts and made a subjective assessment of the significance of the results in our conclusions.
Publiceret d. 19. maj 2020
Når Investtech afholder analysekurser - eller er i dialog med småsparere på anden vis - hører vi ofte investorer sige, at småsparere ynder at sælge aktier, når disse er steget fem eller ti procent. Mange tænker, at aktien allerede er steget meget, og vil gerne sikre en gevinst. Og så hellere gå ind i aktier, der er faldet, da de tænker, at upsiden er større.
Fra forrige artikel, som du kan læse her, så vi, at det, at købe taberaktier, ifølge Investtech-forskning statistisk set har vist sig at være en dårlig strategi.
Nu vil vi se, at det ligeledes kan være en fejl at sælge vinderaktier tidligt. Og vi vil samtidig påstå, at det er den allermest almindelige fejl, småsparere begår. Investtech-forskning kan fremlægge overbevisende tal for, at aktier, der allerede er steget, og viser visse typer købssignaler, fortsat vil stige. Og ikke blot fortsætter de med at stige; de stiger mere end andre aktier.
Historisk set har det godt kunne betale sig at holde fast i vinderaktierne i langt tid. Den positive udvikling for selskaberne og optimistiske stemning hos investorerne varer ofte meget længere, end mange tror, og kurserne fortsætter med at stige over langt tid.
Vi skal herunder se på fem typer aktier, som man, ifølge Investtech-forskning, bør købe.
En stigende trend indikerer, at bedriften befinder sig i en positiv udvikling, og at købsinteressen blandt investorer er stigende. Da vil aktiekursen fortsætte med at stige. Statistik* på 45.958 tilfælde, hvor aktier på de nordiske aktiemarkeder lå i stigende trendkanaler på mellemlangt sigt, viser, at disse i gennemsnit steg med 7,5 procentpoint mere end referenceindeksene på årlig basis.
Ørsted ligger i en stigende trendkanal på mellemlangt sigt. Et videre opsving indikeres.
Aktier, der er steget meget på kort tid, anses for at være ‘overkøbte’. Forholdet måles ved at se på aktiens Relative Strength Index, RSI, og regnes af klassisk teknisk analyselitteratur for at være et salgssignal. Investtechs forskning viser imidlertid, at høj RSI indikerer, at aktien har stærkt positivt momentum, og at købsinteressen fortsat vil stige. Dermed vil det være en fejl at sælge disse aktier. Investtech-forskning* baseret på 36043 tilfælde, hvor RSI oversteg 70, viste en gennemsnitlig årlig stigningstakt i den efterfølgende periode på 9,0 procentpoint mere end andre aktier.
Bavarian Nordic har en RSI over 70 og viser derved et stærkt positivt momentum og bør derfor ifølge Investtech-forskning købes.
Købssignal fra rektangelformationer opstår, når investorer presser kursen op gennem tidligere toppunkter for at komme ind i aktien. Investtech-forskning* baseret på 4314 signaler viser, at kursen i den efterfølgende periode steg 9,8 procentpoint mere end andre aktier årligt.
Brdr.Hartmann har afgivet købssignal fra en rektangelformation og indikerer derved en videre stærk udvikling.
Brud over det sidste modstandsniveau i et kursdiagram forekommer, når mange investorer køber, selvom aktien aldrig – eller ikke i meget langt tid – er blevet handlet til højere kurser. Samtidig er der få, der vil sælge, og kursen bryder derfor op. Aktier, der udløste et sådant brud, og samtidig lå langt over det sidste modstandsniveau i grafen, steg ifølge Investtech-forskning* 12,0 procentpoint mere end andre aktier på årlig basis.
ChemoMetec har brudt modstanden ved 9,00 kr. Det udløste et købssignal, kursen ligger langt over dette niveau, og Investtech anbefaler at købe aktien.
Når en person i selskabets bestyrelse eller ledelse køber aktier, er det et signal om, at vedkommende tror, aktiekursen vil stige. Det kan være, at insideren mener, markedet har straffet aktien for meget efter negativ omtale eller at positiv omtale ikke er værdsat nok. Det kan også være mere generelt, at fremtidsudsigterne for selskabet ser gode ud, og at insidere opfatter risikoen ved et køb for at være lav. Aktier med køb fra insidere er statistisk set* steget 7,1 procentpoint mere end referenceindeksene på årligt basis.
Pandora faldt drastisk, da frygten for Corona var på sit højeste i februar og marts. CEO og CFO købte på samme tid, og i sidste uge købte et bestyrelsesmedlem også aktier. Pandora er positiv på insiderhandler.
*Alle forskningsresultaterne gælder for de nordiske aktier tilsammen; Norge fra 1996, Sverige fra 2003, Danmark fra 2005 og Finland fra 2007. For alle landene gælder, at vi så på data frem til 31.12.2018. De årlige afkastningstal er beregnet med udgangspunkt i kursudviklingen de første tre måneder efter signalerne.
Aktier med sådanne købssignaler har i gennemsnit klaret sig bedre end markedet de kommende måneder. Årligt merafkast har været 7.5 procentpoint (%p). Dette er signifikant bedre end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Købssignaler mellemlang | 20.0% |
Referenceindeks | 12.6% |
Merafkastning | 7.5%p |
Disse forskningsresultater er baseret på 45958 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne købssignaler har i gennemsnit klaret sig bedre end markedet de kommende måneder. Årligt merafkast har været 9.0 procentpoint (%p). Dette er signifikant bedre end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Købssignaler mellemlang | 22.5% |
Referenceindeks | 13.4% |
Merafkastning | 9.0%p |
Disse forskningsresultater er baseret på 36043 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne købssignaler har i gennemsnit klaret sig bedre end markedet de kommende måneder. Årligt merafkast har været 9.8 procentpoint (%p). Dette er signifikant bedre end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Købssignaler mellemlang | 23.6% |
Referenceindeks | 13.8% |
Merafkastning | 9.8%p |
Disse forskningsresultater er baseret på 4314 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne købssignaler har i gennemsnit klaret sig bedre end markedet de kommende måneder. Årligt merafkast har været 12.0 procentpoint (%p). Dette er signifikant bedre end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Købssignaler mellemlang | 24.4% |
Referenceindeks | 12.4% |
Merafkastning | 12.0%p |
Disse forskningsresultater er baseret på 44463 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne købssignaler har i gennemsnit klaret sig bedre end markedet de kommende måneder. Årligt merafkast har været 7.1 procentpoint (%p). Dette er signifikant bedre end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Købssignaler mellemlang | 16.3% |
Referenceindeks | 9.3% |
Merafkastning | 7.1%p |
Disse forskningsresultater er baseret på 11322 signaler fra nordiske aktier i perioden 1999-2018.
Publiceret d. 13. maj 2020
Når børsnoterede selskaber oplever problemer, og kurserne raser, oplever mange småsparere stor upside og køber, mens erfarne forvaltere og større investorer ofte sælger ud. At købe taberaktier, så som fx Bang & Olufsen, er en af de mest almindelige fejl, småsparere begår. Se statistikken her og bliv klogere på, hvorfor vi også anbefaler at sælge Bioporto, Per Aarsleff og Zealand Pharma.
Forskning, Investtech har foretaget, viser overbevisende tal for, at aktier, der er faldet og har udløst salgssignaler, fortsætter med at gøre det svagt. Vores portefølje af hold dig væk fra-aktier for Oslo Børs, som vi har opdateret siden 2005, har vist et årligt gennemsnitsfald på 23,2 procent, mens Oslo Børs i samme periode i gennemsnit er steget 7,6 procent.
I marts faldt stort set alle aktierne på Stockholmsbørsen. Nogle aktier ligger fortsat i faldende trender, mens andre er brudt op, og flere ligger i stigende trender. Ifølge vores forskning er det helt afgørende, hvilke aktier man køber nu. Vi ser på fire typer aktier, man, ifølge Investtech-forskning, ikke bør købe.
En faldende trend indikerer, at bedriften er inde i en negativ udvikling, og at købsinteressen blandt investorer er aftagende. Da vil aktiekursen falde videre. Statistik* på 26.943 tilfælde, hvor aktier på de nordiske aktiemarkeder gik ind i faldende trendkanaler på mellemlangt sigt viser, at disse i gennemsnit udviklede sig 5,1 procentpoint svagere end referenceindeksene på årlig basis.
Bioporto ligger i en faldende trendkanal på mellemlangt sigt. Et videre fald indikeres.
Salgssignal fra rektangelformationer opstår, når investorer presser kursen ned gennem tidligere bundpunkter for at komme ud af aktierne. Investtech-forskning* baseret på 3109 signaler viser, at kursen den efterfølgende periode underpræsterede med 4,9 procentpoint årligt.
Per Aarsleff Holding har afgivet salgssignal fra en stor rektangelformation og indikerer derved en videre svag udvikling.
Brud under det sidste støtteniveau i et kursdiagram sker, når mange investorer sælger trods det, at aktien aldrig - eller ikke i meget langt tid - er blevet handlet til lavere kurser. Samtidig er der få købere til at tage imod, og kursen bryder ned. Aktier, som udløste et sådant brud og lå langt under det sidste støtteniveau i grafen, klarede sig ifølge Investtech-forskning* 7,6 procentpoint svagere end andre aktier på årlig basis.
Bang & Olufsen har udviklet sig negativt længe og er nu også brudt ned gennem den sidste støtte i kursdiagrammet ved 21 kr. Investtech anbefaler at sælge aktien.
Når en person i et selskabs bestyrelse eller ledelse sælger aktier, kan det være et signal om, at vedkommende er bange for, at aktiekursen vil falde. Det kan være, at insideren mener, at aktien er steget for meget i forhold til udvikling og potentiale i selskabet, eller at markedet ikke har taget godt nok imod øget risiko eller negative nyheder. Aktier med salg fra insidere har statistisk set* udviklet sig 3,0 procentpoint svagere end referenceindeksene på årlig basis.
Zealand Pharma er steget med over 50 procent, siden aktien bundede ud i marts. EVP Adam Steensberg har i løbet af opsvingsperioden solgt ud for cirka 13 millioner kroner á tre omgange, og Zealand er negativ på insiderhandler.
*Alle forskningsresultaterne gælder for nordiske aktier indsamlet i Danmark fra 2005, Sverige fra 2003, Norge fra 1996 og Finland fra 2007. For alle landene gælder, at vi så på data frem til 31.12.2018. Årlige afkastningstal er beregnet baseret på kursudvikling de første tre måneder efter signalerne.
Aktier med sådanne salgssignaler har i gennemsnit klaret sig dårligere end markedet de kommende måneder. Årligt mindre afkast har været 5.1 procentpoint (%p). Dette er signifikant lavere end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Salgssignaler mellemlang | 2.2% |
Referenceindeks | 7.3% |
Merafkastning | -5.1%p |
Disse forskningsresultater er baseret på 26943 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne salgssignaler har i gennemsnit klaret sig dårligere end markedet de kommende måneder. Årligt mindre afkast har været 4.9 procentpoint (%p). Dette er signifikant lavere end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Salgssignaler mellemlang | 5.6% |
Referenceindeks | 10.5% |
Merafkastning | -4.9%p |
Disse forskningsresultater er baseret på 3109 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne salgssignaler har i gennemsnit klaret sig dårligere end markedet de kommende måneder. Årligt mindre afkast har været 7.6 procentpoint (%p). Dette er signifikant lavere end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Salgssignaler mellemlang | -4.6% |
Referenceindeks | 3.1% |
Merafkastning | -7.6%p |
Disse forskningsresultater er baseret på 19586 signaler fra nordiske aktier i perioden 1996-2018.
Aktier med sådanne salgssignaler har i gennemsnit klaret sig dårligere end markedet de kommende måneder. Årligt afkast har været 3.0 procentpoint (%p) lavere end referenceindekset.
Årligt afkast (baseret på 66-dages-tal) | |
Salgssignaler mellemlang | 8.4% |
Referenceindeks | 11.4% |
Merafkastning | -3.0%p |
Disse forskningsresultater er baseret på 6944 signaler fra nordiske aktier i perioden 1999-2018.
Published 29 September 2023
Based on nearly 200,000 signals in stocks on the Nordic stock exchanges in the period from 2008 to 2020, we have studied to what extent key signals in technical analysis have proven accurate. This article provides an overview of our most significant research results. The main conclusion is that stocks have largely risen after buy signals and fallen after sell signals, as the theory suggests.
Investtech's systems are based on research dating back to 1994. Several of our projects are supported by the Norwegian Research Council. The research is built on principles such as mathematical pattern recognition, statistical optimization, and behavioural finance. We use algorithms to automatically identify buy and sell signals. There are four main signal groups within technical analysis. In addition, we also examine return following insider trading signals.
1. Stocks in a rising trend (buy) and stocks in a falling trend (sell)
Trends are one of the most important indicators in technical analysis. According to technical analysis theory, stocks in rising trends continue to rise, while stocks in falling trends continue to fall. Research conducted by Investtech shows that this holds true.
2. Price far above last resistance (buy) and far below last support (sell)
Support and resistance can be used to find good buy and sell levels. When the price breaks upwards through a resistance level, it triggers a buy signal. When it breaks downwards through a support level, it triggers a sell signal. The price may then move several percentage points in a short time.
3. RSI above 70 (buy signal) versus RSI below 30 (sell signal)
Momentum has proven to be a strong indicator of future price development.
4. Rectangle patterns
A rectangle formation indicates consolidation in the market. The longer the formation develops, the more pressure builds among investors. When the formation is broken, it is often followed by a significant price movement in the same direction.
5. Insider buying (buy signal) and insider selling (sell signal)
Analysis of insider transactions is Investtech's alternative to fundamental analysis. When a person in the company's board or management buys stocks, it is a signal that they believe the stock is cheap. Insider selling is considered a signal that the stock is expensive or that the risk is high.
Below, you will find research results for each of the five signal types, but first, a brief explanation of how to interpret the results.
When the systems detect a new technical signal, we set day number 0 to be the day the signal was triggered. This is on the far left in the charts below. We have then studied how these stocks have developed in the subsequent 66 trading days, equivalent to three months.
The charts show relative figures in relation to benchmark. For example, if a stock on the Oslo Stock Exchange increased by 5.0 per cent in three months, while benchmark increased by 3.5 per cent, the relative return is +1.5 percentage points.
The blue line represents stocks with buy signals. If it rises, it means that the stocks with buy signals increased more than the market in the same period. The red line represents stocks with sell signals. If it falls, it means that the stock with the sell signal performed weaker than the market in the same period.
The shaded areas are an estimate of uncertainty. The narrower they are, the less uncertainty in the chart.
When the blue line rises and the red one falls, along with with narrow shaded areas, we have strong signals. It has then been advantageous to buy the stocks with buy signals and sell those with sell signals.
For a rising trend, the chart shows a relative increase of 1.5 percentage points, as seen in the blue line in the chart below. This is for a period of 66 days, equivalent to a quarter of a year. Repeated four times over a year, and with the compounding effect, it results in an annual excess return of 6.5 percentage points, as shown in the table.
However, this is relative to benchmark, which increased by 9.7 per cent annually, so the annual return for stocks in a rising trend has been an average of 16.3 per cent per year.
You can also experiment a bit and, for example, repeat it over ten years. This results in a return of 352 per cent for stocks in a rising trends, 152 per cent for benchmark, and 40 per cent for stocks in falling trends.
Nordic markets combined: 35,097 buy signals, 23,289 sell signals in the period 2008-2020:
Nordic markets, annualised (based on 66-day figures) | Return | Benchmark | Diff v average benchmark | Diff v benchmark in same period |
Buy signals | 16.3 % | 9.7 % | 6.4 %p | 6.5 %p |
Sell signals | 3.4 % | 9.2 % | -6.4 %p | -5.8 %p |
%p = percentage point
Nordic markets combined: 32,531 buy signals, 17,487 sell signals in the period 2008-2020:
Nordic markets, annualised (based on 66-day figures) | Return | Benchmark | Diff v average benchmark | Diff v benchmark in same period |
Buy signals | 18.2 % | 8.1 % | 8.4 %p | 10.1 %p |
Sell signals | 4.5 % | 11.6 % | -5.3 %p | -7.1 %p |
Nordic markets combined: 35,864 buy signals, 24,920 sell signals in the period 2008-2020:
Nordic markets, annualised (based on 66-day figures) | Return | Benchmark | Diff v average benchmark | Diff v benchmark in same period |
Buy signals | 17.1 % | 9.7 % | 7.3 %p | 7.4 %p |
Sell signals | 6.1 % | 11.7 % | -3.8 %p | -5.7 %p |
Nordic markets combined: 3,368 buy signals, 2,677 sell signals in the period 2008-2020:
Nordic markets, annualised (based on 66-day figures) | Return | Benchmark | Diff v average benchmark | Diff v benchmark in same period |
Buy signals | 19.8 % | 10.8 % | 10.0 %p | 9.0 %p |
Sell signals | 4.3 % | 10.9 % | -5.5 %p | -6.6 %p |
Nordic markets combined: 9,837 buy signals, 5,158 sell signals in the period 2008-2020:
Nordic markets, annualised (based on 66-day figures) | Return | Benchmark | Diff v average benchmark | Diff v benchmark in same period |
Buy signals | 19.0 % | 10.9 % | 8.7 %p | 8.1 %p |
Sell signals | 8.0 % | 9.7 % | -2.3 %p | -1.8 %p |
By Head of R&D Mr. Geir Linløkken and research assistant Mr. Fredrik Dahl Bråten, Investtech, published October 6th, 2022.
Abstract: A price shock is when a stock price rises or falls unusually hard. International research into price shocks suggests that such stocks are usually followed by negative return, regardless of the price shock’s direction. We have studied this effect in the Nordic markets. Based on previous Investtech research, we figured that the negative return could not exclusively be explained by price shocks, but rather by the stocks’ high volatility. By excluding the most volatile stocks from the data set, we found that stocks with positive price shocks continued rising and stocks with negative price shocks continued falling. In other words, for normal volatile stocks with positive price shocks, the results are the opposite of that indicated by international research.
International research has largely studied absolute price shocks, i.e. percentage change in closing price from one day to the next. Negative return of 6 and 13 percentage points following large positive and negative price shocks respectively were found in the month following the price shocks.
Our data from the Nordic stock markets in the period 2008 to 2020 showed that both positive and negative absolute price shocks statistically were followed by assumed statistically significant negative excess return vs benchmark. The strongest effects were seen for the largest price shocks, with a price rise of at least 27 per cent or a fall of at least 19 per cent from one day to the next. Shocks this big were identified approximately once every second or third year per stock. Negative excess returns the following month were 6.3 and 1.8 percentage points for positive and negative price shocks respectively.
The largest absolute price shocks tend to come from stocks with high volatility. Thus, such stocks represent a disproportionately large percentage of the buy and sell signals from absolute price shocks. Based on our previous research into excess return from buy and sell signals from highly volatile stocks, it made sense to study whether negative excess return after positive price shocks ties in with higher volatility in the stock, rather than being an effect of the price shock itself.
Certain high-risk stocks can fluctuate 5-10 per cent on an average day, while low-risk stocks barely fluctuate 1 per cent. Consequently, we think that percentage change alone is not sufficient an identifier of a price shock. We calculated volatility-normalized price shocks as closing price change in per cent, adjusted for the stock’s volatility in the last 22 days. The measurement variable is thus price change divided by volatility. The 1.5 per cent biggest price shocks are considered buy and sell signals. This equals a price change of approximately five volatility-normalized price changes’ standard deviations, so that the signal was triggered when the stock in one day changed more than five times the daily standard deviation.
We chose to remove high volatility stocks from the data set, in order to exclude the negative excess return effect from high volatility stocks as much as possible. This means that stocks with an average monthly volatility of 30 per cent or more are excluded from the data set.
Figure 1: Nordic markets combined. Return following buy signals from volatility-normalized price shocks. Thick blue line is signal stocks, thin black line is benchmark. Nordic markets 2008-2020.
Annualised return (based on 66-day figures) | Norway | Sweden | Denmark | Finland | Weighted average |
Buy signal | 13,8 % | 17,7 % | 14,8 % | 12,8 % | 15,8 % |
Benchmark in the same period | 5,8 % | 9,9 % | 11,4 % | 7,9 % | 9,0 % |
Excess return, buy signal | 8,0 pp | 7,8 pp | 3,4 pp | 4,9 pp | 6,8 pp |
pp = percentage point, i.e. the arithmetic difference of the percentage returns. Annualised figures are calculated by repeating the 66-day figures for one year, assuming an average year has 252 stock exchange days.
On average, stocks with positive volatility-normalized price shocks continued rising. After three months, stocks with buy signals had on average risen 3.9 per cent, an excess return of 1.7 percentage points vs benchmark. Statistical measurement values indicate high statistical significance.
All four Nordic markets showed good price increase and excess return for signal stocks. The combined results are considered consistent even though the specific return figures vary. Buy signals from volatility-normalized price shocks are statistically considered to give good signals that can be a basis for making investment decisions in individual stocks.
Figure 2: Nordic markets combined. Return following sell signals from volatility-normalized price shocks. Thick red line is signal stocks, thin black is benchmark. Nordic markets 2008-2020.
Annualised return (based on 66-day figures) | Norway | Sweden | Denmark | Finland | Weighted average |
Sell signal | -8,8 % | 8,9 % | -1,0 % | 4,7 % | 3,3 % |
Benchmark in same period | 5,8 % | 16,1 % | 9,3 % | 9,3 % | 12,0 % |
Excess return, sell signal | -14,6 pp | -7,3 pp | -10,3 pp | -4,6 pp | -8,6 pp |
On average, stocks with sell signals have risen following the signals for the Nordic markets combined. However, the rise has been a lot lower than benchmark in the same period, and negative excess return has increased over the following three-month period.
After three months, stocks with sell signals had on average risen 0.9 per cent, a negative excess return of 2.3 percentage points vs benchmark. Annualised negative excess return was 8.6 percentage points. Statistical measurement values indicate high statistical significance.
Sell signals from negative volatility-normalized price shocks are considered to be good input into a technical stock trading strategy for identification of stocks to sell and stay away from.
Stocks where the price on a single day changes to an unusual degree are said to trigger price shocks. Following absolute price shocks, we found that stocks with positive and negative price shocks both underperformed compared to benchmark, in line with previous research.
When we normalized the price shocks for the stock’s volatility, and also excluded the most volatile stocks, we found that stocks with positive price shocks were followed by excess return of assumed statistical significance. Stocks with negative price shocks were followed by assumed statistically significant negative excess return.
The results indicate that stocks with volatility-normalized price shocks, larger than five times normal daily fluctuations, statistically will give excess return in the same direction as the price shock.
Robustness measures indicate that it will be statistically beneficial to sell stocks with negative price shocks, and at the same time beneficial to buy stocks with positive price shocks, in addition to always staying away from the most volatile stocks.
Further details and discussion of results can be found in Norwegian in this research report (Professional subscription required).
Published 13 June 2024
Previous research by Investtech suggests that technical signals perform better in small companies than in large companies. We have now summarized the extensive data and research work we conducted during the winter and spring of 2021. We examined data from all listed companies in Norway, Sweden, Denmark, and Finland for the years 2008-2020. We studied signal types including Trends, Support and Resistance, Price Formations, Volume Balance, Momentum, and Insider Trading.
For references on research reports on the individual signals, see the literature list.
We chose to focus on the most important and largest subtypes of signals from each of the above categories: Within rising/falling trend channels, Break upwards through resistance/break downwards through support, Rectangles and Head-and-shoulders formations, High/low volume balance, High/low RSI momentum, and Insider buying/selling.
In total, this comprised 254,548 signals, divided into 150,380 buy signals and 104,168 sell signals. We defined small companies and large companies as stocks with an average daily turnover of between 0.5 and 5 million NOK and over 5 million NOK, respectively.
The signals were roughly equally distributed between large and small companies, with a total of 128,089 signals from small companies and 126,459 signals from large companies.
We wanted to see if there were systematic differences between the groups.
The charts below show average price development following buy signal from stocks being within a rising trend channel. The signals are triggered on day 0. Only days when the exchange is open are included, so 66 days equal approximately three months. The thick blue line shows the development of buy signal stocks. The shaded areas are the standard deviation of the calculations. The thin blue line shows benchmark development in the same period as the buy signal stocks.
Two charts are shown, for low-liquidity and high-liquidity companies respectively, referred to as Small companies and Large companies. The charts apply to the Nordic markets as a whole. Click the images for bigger version.
Relative return after 66 days | Norway | Sweden | Denmark | Finland | Weighted average |
Excess return buy signal Small companies | 2.2 %p | 2.5 %p | 1.5 %p | 2.3 %p | 2.3 %p |
Excess return buy signal Large companies | 1.0 %p | 0.9 %p | 0.9 %p | 0.6 %p | 0.9 %p |
Relative return after 66 days | Norge | Sverige | Danmark | Finland | Weighted average |
Excess return sell signal Small companies | -4.0 %p | -1.7 %p | -2.8 %p | -0.5 %p | -2.2 %p |
Excess return sell signal Large companies | -3.2 %p | 0.4 %p | -0.8 %p | 1.7 %p | -0.4 %p |
The examples above show results for rising and falling trends, which together make up about a quarter of the total dataset. We see that both buy and sell signals have performed better for small companies than for large companies, and that the results are quite consistent across the four markets.
The same largely applies to the other signal types. Annualized figures for all the signals we examined show that small companies with buy signals were followed by an annualized excess return of 6.6 percentage points, while large companies with buy signals were followed by an excess return of 2.9 percentage points.
Several factors can explain such an effect:
*First, small companies are less analyzed than large companies and receive less attention in the press. It can therefore take longer for company-specific or industry-specific information to become known to investors, and the information can be disclosed at different times. When some begin to trade on the information, this will often trigger technical signals, and when others later follow, the stocks will continue in the same direction.
*The second factor is that small companies have low liquidity on the stock exchange. In our dataset, we included stocks with an average daily turnover of between half a million and five million NOK. If a large investor or a large stock fund wants to build a position in a small company, it will often take many days to complete the trade. A technical signal can thus be the start of further buy or sell interest in the same direction. For example, if a large investor wants to invest 10 million NOK in a stock that trades for 2 million NOK daily on average, the transaction could easily take several weeks.
*A final explanation may be that news and changing market conditions often have a larger relative effect on small companies than on large companies. This can lead to greater price movements for small companies.
Regardless of the explanation, the differences seem to be statistically significant: The signals have worked better for small companies than for large companies. By consistently focusing on small companies and signals in small companies, the results indicate good opportunities for achieving better returns than the market as a whole, but also better returns than for large companies with corresponding buy signals.
Note that the signals for large companies also predominantly show excess return vs the market, and stocks with sell signals underperform. Systematic use of technical analysis can yield good results and excess return vs the market also for large companies.
In our statistics we used data from 2008-2020 and a liquidity threshold of five million NOK. Liquidity on the stock exchange has increased during this period, and it may be that many stocks that were previously in the small companies group now fall under large companies. We consider this not as a fixed limit but rather as a sliding transition between small and large companies. We set the limit to study if there are differences between large and small companies. Simple tests indicate that there are statistically significant results for medium-sized companies as well, and that it is primarily the largest companies, such as OBX, OMX and C20 companies, that weaken the results for large companies.
Keywords: Buy signal,Helsingfors,Kjøpssignal,København,Momentum,Oslo,Salgssignal,Sell signal,statistics,statistikk,Stockholm.
Published April 11th 2024
By: Analyst Fredrik Dahl Bråten and Head of Research Geir Linløkken, Investtech.
Abstract:
Investtech launched the Investtech Indices in April 2022. We are now following up on last year's Investtech Indices research article with figures for the period 2023-2024. We examine how factors such as trend status, insider trading, and liquidity have contributed to returns over the past year. The main conclusion is that rising trends, positive technical scores, and insider buying have been associated with excess return in the subsequent period. High-volatility stocks have, as before, significantly underperformed compared to less volatile stocks. Low-liquidity stocks showed a significant negative excess return compared to more liquid stocks in this past year, as they also did last year.
Investtech has updated a range of equally weighted indices for stocks with different technical and quantitative characteristics since April 2022. The idea is that these indices effectively demonstrate the returns one would have obtained by mechanically following quantitative strategies in stock trading. The indices can also indicate the short-term market drivers and what has recently yielded a good "payoff."
The members of each index are fully updated automatically at specified intervals, and returns are calculated automatically on each trading day.
Unlike many market indices, the Investtech Indices are equally weighted. This means that all stocks initially have the same weight, whether they belong to very large or relatively small companies. These indices can serve as good benchmark indices for investors who follow Investtech's analyses and allocate their funds in fairly equal proportions across their portfolios.
Read more about the Investtech Indices here!
On May 25th 2023, we published results for all Nordic Investtech Indices for the period 2022-202 and 2013-2023. Below we follow up with results for 2023-2024 and the decade 2014-2024. The charts and tables are as of April 5th, 2024.
Index name | Return past year | Annualised past ten years |
Norway Equally weighted | 8.5 % | 5.3 % |
Sweden Equally weighted | -1.1 % | 8.8 % |
Denmark Equally weighted | 11.6 % | 12.3 % |
Finland Equally weighted | -2.6 % | 8.5 % |
Nordic Equally weighted | 5.1 % | 8.5 % |
---|
Note that the chart for the past year is the past calendar year, whereas the values in the table for the past year are for the past 252 days, which is not quite one calendar year. This may cause a slight difference between the chart and the table.
The equally weighted combined Nordic index will be the benchmark index for all the others. As of April 5 2024, it consists of the 835 Nordic stocks with an average daily turnover above 500,000 NOK. The members of the index are updated quarterly. Each stocks weighs the same to begin with and return is calculated daily.
In the past year, just like last year, Denmark did best, rising 11.5 per cent. Close behind was Norway, rising 8.5 per cent. Sweden and Finland saw a decrease of 1.1 and 2.6 per cent respectively. The Nordic countries combined were up 1.5 per cent, which is significantly better than last year's decrease of 4.6 per cent.
Index name | Return past year | Annualised past ten years |
Nordic Rising trend | 12.8 % | 18.4 % |
Nordic Horizontal trend | 20.6 % | 10.8 % |
Nordic Falling trend | -1.5 % | -2.6 % |
Members of the trend indices are updated monthly. Index development one month is determined by the development of the stocks that had the various trend statuses at the end of the previous month.
In the past year, stocks in rising trends have risen 12.8 per cent. This is 7.7 percentage points better than benchmark (Nordic Equally weighted). Stocks in falling trends underperformed, falling 1.5 per cent, equal to 3.6 percentage points weaker than benchmark.
Shares in horizontal trends have been a positive surprise this year and shown an excess return of around 10 per cent above the ten-year average.
The difference in the past year between stocks in rising trends and in falling trends is a solid 14.3 percentage points, a little less than last year's difference of 18.7 percentage points. This is a little lower the average for the past ten years, which is 21.0 percentage points.
The figures show that trend signals worked well in the past year.
Index name | Return past year | Annualised past ten years |
Nordic High tech score (buy and weak buy) | 13.8 % | 17.8 % |
Nordic Medium tech score (neutral) | 5.2 % | 3.0 % |
Nordic Low tech score (sell and weak sell) | 2.0 % | 0.4 % |
In the past year, stocks with high technical score have clearly outperformed stocks with neutral or low technical score. In other words, stocks with positive or weak positive algorithmic recommendations have done better than stocks with neutral or negative recommendations. The difference down to indices for neutral and negative indices is 9-12 percentage points. This is a big gap, but slightly smaller than for the past decade, when the difference was 15-17 percentage points
The figures show that Investtech's technical score recommendations have worked well in the past year, but not quite as well as for the past ten years.
Index name | Return past year | Annualised past ten years |
Nordic High insider score (buy and weak buy) | 14.4 % | 13.7 % |
Nordic Medium insider score (neutral) | 5.3 % | 6.6 % |
Nordic Low insider score (sell and weak sell) | 2.2 % | 8.9 % |
There are many more insider purchases than sales in the market, and the insider purchase index has 261 members on April 5, while the insider sales index has 94 members.
In the past year, the index for stocks with high insider score has risen 14.4 per cent, high above last year's rise of 2.4 per cent and close to the average of the past decade of 13.7 per cent. The insider sales index has risen significanty less and was up a mere 2.2 per cent. The difference of 12.2 percentage points is greater than the 4.8 percentage points it has been the past ten years.
The chart shows that insider purchases have been a good indicator in the past year.
Index name | Return past year | Annualised past ten years |
Nordic Least volatile 20 percentile | 15.7 % | 14.7 % |
Nordic Second least volatile 20 percentile | 18.0 % | 14.5 % |
Nordic Middle volatile 20 percentile | 20.7 % | 13.9 % |
Nordic Second most volatile 20 percentile | 4.7 % | 7.6 % |
Nordic Most volatile 20 percentile | -13.6 % | -2.3 % |
Stock volatility is a fairly consistent characteristic over time. If a stock fluctuated a lot during a period, it's likely to fluctuate for the next period as well.
There are no surprises here. As before, the group of the most volatile stocks has significantly underperformed. This fifth of the stocks is down 14 per cent. This is much weaker than the less volatile indices. Compared to the results of the past 10 years, the less volatile stocks have risen more than usual and the volatile stocks have fallen more than usual. The companies with moderate volatility have been a positive surprise in the past year with an excess return around 7 percentage points above the ten-year average.
The ten-year chart shows these effects very clearly: the most volatile stocks have performed much weaker than the other groups. However, the second most volatile stocks have also underperformed.
The chart shows that the most volatile stocks have underperformed in the past year. It can be tempting to buy such stocks, which have often fallen a lot and have high upside, but the indices suggest this is a dangerous strategy. Based on the long term chart, it is considered a wise strategy for long term investors to stay entirely away from the most volatile stocks.
Index name | Return past year | Annualised past ten years |
Nordic Least liquid 20 percentile | 2.7 % | 8.5 % |
Nordic Second least liquid 20 percentile | 2.6 % | 8.9 % |
Nordic Middle liquid 20 percentile | 10.9 % | 10.6 % |
Nordic Second most liquid 20 percentile | 15.8 % | 10.9 % |
Nordic Most liquid 20 percentile | 12.4 % | 10.0 % |
In the past year, the equally weighted Investtech index for the largest companies in the Nordic region is up around 12 per cent (black curve in the chart). The index for the second largest companies (dark blue curve) is up around 16 per cent, while the two groups of small companies (light blue curves), those traded for between approximately half a million and three million Norwegian kroner per day, are up a mere 3 per cent.
Small-cap companies have performed much weaker than large-cap companies in the past 12 months. In the long term, the past ten years, the indices have followed each other closely, and there are only small differences between the groups.
Although small companies have underperformed compared to large companies recently, we should be cautious in believing that this is a persistent change in the market. Rather, we believe that the long term statistics still hold true, and that small companies will again develop in line with the market. The groups of small companies performed much better this year than last year, when the indices fell 12 and 18 per cent. This may be a sign that small-cap will do better in the future and eventually catch up to the big companies, based on the ten-year figures.
Trends have continued to be a good indicator of whether stocks will rise or fall. Just as theory and previous statistics have shown, it has been a good choice to buy stocks in rising trends and sell stocks in falling trends.
Stocks with a high technical score, meaning algorithmic positive recommendations, have performed significantly better in the past year than those with a neutral or negative recommendation.
Insider trading has also been a good indicator, with positive returns in the past year for stocks with insider purchases, while stocks with insider sales or no insider trading have performed less well.
Very high volatility, which has previously been strongly associated with lower returns, continues to indicate weak performance. The most volatile fifth of the Nordic stocks has underperformed by around 30-35 percentage points compared to the other four groups in the past year.
Small-cap companies have performed much weaker than large-cap companies in the past year. However, in the long term, there is nothing to suggest that such stocks will continue to underperform.
We conclude that the Indices have largely followed development patterns from previous years, and that Investtech's analyses can provide valuable insights into which stocks to buy, sell, and avoid.
The Investtech Indices and the statistical relationships revealed through them support our strategy underlying Investtech's analyses: Buy stocks that are technically positive, in upward trends, and/or show positive insider trading. Sell correspondingly negative stocks. Completely avoid investing in the most volatile stocks.
Small-cap stocks have underperformed in the recent period, while in the long term, they have performed in line with larger companies. From the signal statistics in our extensive research project from 2021, we saw that small-cap stocks provided stronger technical signals than large-cap stocks, making it potentially easier to achieve excess return in smaller companies. We still consider it favourable to have more small-caps in a portfolio, even though this may result in significant deviation from benchmark in some periods.
Historical results are no guarantee of similar future results. Market conditions may change in the future, and other factors may come into play. However, the statistics and the summary of the Investtech Indices over the past year are considered to confirm previous results and support the notion that these are persistent effects in the markets. Research findings and statistics will continue to play a central role in Investtech's subjective recommendations in morning reports, model portfolios, and other analysis publications.
Published May 25th, 2023.
By: Head of Research Geir Linløkken, Investtech.
Abstract:
Investtech launched the Investtech Indices in April last year. This is the first research article based on the indices. We examine how factors such as trend status, insider trading, and liquidity have contributed to returns over the past year. The main conclusion is that rising trends, positive technical scores, and insider buying have been associated with excess return in the subsequent period. High-volatility stocks have, as before, significantly underperformed compared to less volatile stocks. Unlike in the past, low-liquidity stocks have shown a significant negative excess return compared to more liquid stocks.
Investtech has been updating a range of equally weighted indices for stocks with different technical and quantitative characteristics since April 2022. The idea is that these indices effectively demonstrate the returns one would have obtained by mechanically following quantitative strategies in stock trading. The indices can also indicate the short-term market drivers and what has recently yielded a good "payoff."
The members of each index are fully updated automatically at specified intervals, and returns are calculated automatically on each trading day.
Unlike many market indices, the Investtech Indices are equally weighted. This means that all stocks initially have the same weight, whether they belong to very large or relatively small companies. These indices can serve as good benchmark indices for investors who follow Investtech's analyses and allocate their funds in fairly equal proportions across their portfolios.
Read more about the Investtech Indices here!
Below are the results for all Investtech Indices at the Nordic level. The graphs and tables are as of May 15, 2023.
Index name | Return past year | Annualised past ten years |
Norway Equally weighted | -3.7 % | 7.4 % |
Sweden Equally weighted | -10.8 % | 11.6 % |
Denmark Equally weighted | 15.5 % | 14.5 % |
Finland Equally weighted | -1.4 % | 10.6 % |
Nordic Equally weighted | -4.6 % | 10.9 % |
---|
Note that the chart for the past year is the past calendar year, whereas the values in the table for the past year are for the past 252 days, which is not quite one calendar year. This may cause a slight difference between the chart and the table.
The equally weighted combined Nordic index will be the benchmark index for all the others. As of May 15 2023, it consists of the 807 Nordic stocks with an average daily turnover above 500,000 NOK. The members of the index are updated quarterly. Each stocks weighs the same to begin with and return is calculated daily.
For the past year, Denmark did best, rising 15.5 per cent. Sweden was weakest, down by 10.8 per cent, while Norway and Finland, as well as the Nordic markets combined, saw a slight decrease.
Index name | Return past year | Annualised past ten years |
Nordic Rising trend | 8.1 % | 20.4 % |
Nordic Horizontal trend | -0.3 % | 11.2 % |
Nordic Falling trend | -10.6 % | -1.0 % |
Members of the trend indices are updated monthly. Index development one month is determined by the development of the stocks that had the various trend statuses at the end of the previous month.
In the past year, stocks in rising trends have risen 8.1 per cent. This is 12.7 percentage points better than benchmark (Nordic Equally weighted). Stocks in falling trends underperformed, falling 10.6 per cent, equal to 6.0 percentage points weaker than benchmark.
The difference in the past year between stocks in rising trends and in falling trends is a solid 18.7 percentage points. This is in line with the average for the past ten years, which is 21.4 percentage points.
The figures show that trend signals have worked well in the past year.
Index name | Return past year | Annualised past ten years |
Nordic High tech score (buy and weak buy) | -0.4 % | 19.7 % |
Nordic Medium tech score (neutral) | -9.6 % | 5.0 % |
Nordic Low tech score (sell and weak sell) | -8.3 % | 2.5 % |
In the past year, stocks with high technical score have clearly outperformed stocks with neutral or low technical score. In other words, stocks with positive or weak positive algorithmic recommendations have done better than stocks with neutral or negative recommendations. The difference down to indices for neutral and negative indices is 8-9 percentage points. This is a big gap, but slightly smaller than for the past decade, when the difference was 14-16 percentage points.
The figures show that Investtech's technical score recommendations have worked well in the past year, but not quite as well as for the past ten years.
Index name | Return past year | Annualised past ten years |
Nordic High insider score (buy and weak buy) | 2,4 % | 16,1 % |
Nordic Medium insider score (neutral) | -9.2 % | 8.7 % |
Nordic Low insider score (sell and weak sell) | -4.1 % | 11.4 % |
There are many more insider purchases than sales in the market, and the insider purchase index has 257 members on May 15, while the insider sales index has 69 members.
In the past year, the index for stocks with high insider score has risen 2.4 per cent, while the one for insider sales has fallen 4.1 per cent. The difference of 6.5 percentage points is slightly larger than it has been the past ten years.
The chart shows that insider purchases have been a good indicator in the past year.
Index name | Return past year | Annualised past ten years |
Nordic Least volatile 20 percentile | 0,2 % | 15,6 % |
Nordic Second least volatile 20 percentile | 6.1 % | 15.8 % |
Nordic Middle volatile 20 percentile | -0.2 % | 14.7 % |
Nordic Second most volatile 20 percentile | -1.1 % | 10.3 % |
Nordic Most volatile 20 percentile | -20.3 % | 1.8 % |
Stock volatility is a fairly consistent characteristic over time. If a stock fluctuated a lot during a period, it's likely to fluctuate for the next period as well.
There are no surprises here. As before, the group of the most volatile stocks has significantly underperformed. This fifth of the stocks is down 22 per cent. The other groups are all plus/minus zero.
The ten-year-chart shows the effects just as well: the most volatile stocks have performed much weaker than the other groups. However, here the second most volatile stocks have also underperformed.
The chart shows that the most volatile stocks have underperformed in the past year. It can be tempting to buy such stocks, which have often fallen a lot and have high upside, but the indices suggest this is a dangerous strategy. Based on the long term chart, it is considered a wise strategy for long term investors to stay entirely away from the most volatile stocks.
Index name | Return past year | Annualised past ten years |
Nordic Least liquid 20 percentile | -18.1 % | 11.0 % |
Nordic Second least liquid 20 percentile | -12.0 % | 11.4 % |
Nordic Middle liquid 20 percentile | -2.8 % | 12.7 % |
Nordic Second most liquid 20 percentile | 10.7 % | 12.7 % |
Nordic Most liquid 20 percentile | 9.1 % | 11.5 % |
In the past year, the equally weighted Investtech index for the largest companies in the Nordic region is up around 5 per cent (black curve in the graph). The index for the second largest companies (dark blue curve) is up around 7 per cent, while the two groups of small companies (light blue curves), those traded for between approximately half a million and three million Norwegian kroner per day, are down between 12 and 18 per cent.
Small-cap companies have performed much weaker than large-cap companies in the past 12 months. In the long term, the past ten years, the indices have followed each other closely, and there are only small differences between the groups.
Although small companies have underperformed compared to large companies recently, we should be cautious in believing that this is a persistent change in the market. Rather, we believe that the long term statistics still hold true, and that small companies will again develop in line with the market.
Trends have continued to be a good indicator of whether stocks will rise or fall. Just as theory and previous statistics have shown, it has been correct to buy stocks in rising trends and sell stocks in falling trends.
Stocks with a high technical score, meaning algorithmic positive recommendations, have performed significantly better in the past year than those with a neutral or negative recommendation.
Insider trading has also been a good indicator, with positive returns in the past year for stocks with insider purchases, while stocks with insider sales or no insider trading have performed negatively.
Very high volatility, which has previously been strongly associated with lower returns, continues to indicate weak performance. The most volatile fifth of the Nordic stocks has underperformed by around 20 percentage points compared to the other four groups in the past year.
Small-cap companies have performed much weaker than large-cap companies in the past year. However, in the long term, there is nothing to suggest that such stocks will continue to underperform.
We conclude that the Indices have largely followed development patterns from previous years, and that Investtech's analyses can provide valuable insights into which stocks to buy, sell, and avoid.
The Investtech Indices and the statistical relationships revealed through them support our strategy underlying Investtech's analyses: Buy stocks that are technically positive, in upward trends, and/or show positive insider trading. Sell correspondingly negative stocks. Completely avoid investing in the most volatile stocks. These are often referred to as "lottery stocks" and have consistently delivered weak returns over time.
Small-cap stocks have underperformed in the recent period, while in the long term, they have performed in line with larger companies. From the signal statistics in our extensive research project from 2021, we saw that small-cap stocks provided stronger technical signals than large-cap stocks, making it potentially easier to achieve excess return in smaller companies. We still consider it favourable to have more small-caps in a portfolio, even though this may result in significant deviation from benchmark in some periods.
Historical results are no guarantee of similar future results. Market conditions may change in the future, and other factors may come into play. However, the statistics and the summary of the Investtech Indices over the past year are considered to confirm previous results and support the notion that these are persistent effects in the markets. Research findings and statistics will continue to play a central role in Investtech's subjective recommendations in morning reports, model portfolios, and other analysis publications.
Publisert 19.3.2020
Abstract: Børsene i Norge, Sverige og Danmark er ned henholdsvis 33, 32 og 26 prosent siden toppen tidligere i år. Vi har sett hva som har skjedd når de skandinaviske børsene tidligere har falt like mye, og når Investtechs optimismeindikatorer, hausseindeksene, har vært like lave som nå.
Har man en langsiktig horisont, anbefaler vi nå å kjøpe aksjer, da børsen historisk har steget bra på ett til to års sikt etter slike fall. Er man kortsiktig, og avhengig av å bevare kapitalen, kan det være riktig å selge nå, da det indikeres store svingninger, både opp og ned, på daglig og ukentlig sikt.
Merk: Historien er ingen garanti for hvordan framtiden vil bli. Historien kan imidlertid sette ting litt i perspektiv, og minske noe av usikkerheten i dagens situsjon.
Historisk har aksjemarkedet alltid kommet tilbake. I følge en studie fra Bank of America Securities, referert her, på Yahoo Finance, tar det i gjennomsnitt 4,4 år før markedet er tilbake der det var før et stort fall. På kort sikt er det imidlertid slik at de beste dagene ofte følges av de dårligste dagene, og motsatt. For å komme ned på null sannsynlighet for å tape penger i markedet, har man måtte opp i 20 års tidshorisont.
Det er få tilfeller med like store fall på de skandinaviske børsene som det vi har hatt nå. I de aller fleste tilfellene har kursene svingt mye, direkte etter fallene, og så steget bra på ett og to års sikt.
Fall i OSEBX på minst 30% i løpet av 66 dager og minst 66 dager siden forrige store fall.
Fall i OMXSBGI på minst 30% i løpet av 66 dager og minst 66 dager siden forrige store fall.
Fall i OMXC25GI på minst 25% i løpet av 66 dager og minst 66 dager siden forrige store fall.
Se Tillegg 1 for grafer med kursutvikling for hvert av tilfellene.
Det er svært sjelden at hausseindeksene faller under ti poeng. Siden 1998 er det bare tre tilfeller i Sverige og fem i Norge. I Danmark er det siden 2000 fire tilfeller, mens det i Finland var seks tilfeller. Vi har her ikke telt med tilfeller der det er mindre enn en måned siden forrige gang.
Under vises statistikk for kursutviklingen henholdvis en måned, ett år og to år etterpå.
Det er altså få tilfeller. For Norge og Sverige ser vi at hausseverdier under ti poeng har vært fulgt av god oppgang på børsen, med henholdvis 30 og 41 prosent det kommende året. Danmark har gitt en nedgang på åtte prosent det første året, men likevel opp 14 prosent etter to år. Finland har hatt svak utvikling.
Se Tillegg 2 for hausseindeksene for Norge, Sverige og Danmark.
Se Tillegg 3 for hvordan hausseindeksene kan forstås.
Basert på sluttkurs onsdag 18. mars er børsene i Norge, Sverige og Danmark ned henholdsvis 33, 32 og 26 prosent siden toppen tidligere i år. Alle er på laveste nivå hittil i år, og viser altså foreløpig ingen klar bunn.
Investtechs kortsiktige hausseindekser er henholdsvis 8, 4 og 3 poeng. Den norske hausseindeksen har med det steget to poeng og den danske ett poeng fra lavnivåene tidligere i uken. Den svenske er uendret.
Så lave hausseindekser, men med en positiv endring, indikerer at vi kan stå nær en langsiktig bunn i markedet. Det vil være et mer pålitelig signal når hausseindeksene stiger over ti.
Historisk har markedet steget bra kommende ett og to år, etter slike store fall som vi har hatt nå.
Historisk har markedet steget bra kommende ett og to år, når hausseindeksene er like lave som de er nå. Teoretisk indikeres at vi nå står nær en langsiktig bunn. Historisk vil markedet svinge mye fra dag til dag, og det er svært vanskelig å treffe en bunn.
Det statistiske grunnlaget er lite. Vi tenker følgende er riktig nå:
Kjøp hvis du er langsiktig i markedet, to år eller mer, og ønsker å ta del i den langsiktige verdiskapningen som aksjemarkedet historisk har gitt. Kjøp også om du er kortsiktig, har stor risikotoleranse, og ønsker stor oppside.
Avvent (nye kjøp) om du er kortsiktig ute av markedet, ikke ønsker å være med på de store svingningene som aksjer antas å gi de kommende ukene og dagene, og heller vil avvente sikrere tegn på at oppgangen kommer. Det kan godt være markedene skal lengre ned, før bunnen er nådd.
Selg om du er kortsiktig i markedet, under ett år, og vil minimere risiko for tap av kapital.
Fall i OSEBX på minst 30% i løpet av 66 dager og minst 66 dager siden forrige store fall.
Fall i OMXSBGI på minst 30% i løpet av 66 dager og minst 66 dager siden forrige store fall.
Fall i OMXC25GI på minst 25% i løpet av 66 dager og minst 66 dager siden forrige store fall.
Grafene viser Investtechs kortsiktige hausseindekser for Norge, Sverige og Danmark, sammen med referanseindeksene. Grønn farge i referanseindeksen viser hvor hausseindeksen har vært under ti poeng.
Oslo Børs
Stockholmsbørsen
Københavnsbørsen
Aksjer som stiger over sin foregående topp gir kjøpssignal. Aksjer som faller under sin foregående bunn gir salgssignal. Hausseverdien er prosentandelen av aksjene med kjøpssignal og går fra 0 til 100 poeng. Hausseverdien brukes som et estimat for andelen av investorene som er positive til aksjemarkedet. |
1. Hausseverdier under 50 poeng indikerer at et flertall av investorene er negative. De har solgt på stadig lavere kurser med bakgrunn i liten tro på kursoppgang. |
2. Når hausse bryter under ti poeng, er nesten alle investorene negative. Media overstrømmes av artikler om økonomiske problemer og fall på børsene. Det er innslag av panikk og tvangssalg. |
3. Alle nyheter er negative og skulle det komme noe positivt, blir det bortforklart. Det ser virkelig mørkt ut. Investorene er inne i en depresjon. Enhver endring vil nå være positiv. |
4. Optimismen øker. Fortsatt er en stor majoritet av investorene negative og kursene er lave. Noen begynner imidlertid å ta til seg positive impulser og ny kapital kommer inn i markedet. En aksje som har falt 50 prosent, må stige 100 prosent for å komme opp dit den var. Mange aksjer har stor oppside. |
Keywords: Hausse.
[This article is not yet translated to 000. Showing untranslated version.]
Publisert 17.03.2020
Børsene i Norge, Sverige og Danmark er ned henholdsvis 33, 32 og 26 prosent siden toppen tidligere i år. Hva har skjedd i lignende situasjoner tidligere, og hvor står børsen ett og to år fram i tid?
Vi har sett hva som har skjedd når de skandinaviske børsene tidligere har falt like mye. Her er statistikken:
Fall i OSEBX på minst 30% i løpet av 66 dager og minst 66 dager siden forrige store fall.
1: 19871109 37.18 fall -32.55%, next 22 days: -3.36%, next 250 days: 12.86%, next 500 days: 106.75% 2: 19920824 44.51 fall -32.47%, next 22 days: 8.29%, next 250 days: 80.18%, next 500 days: 110.36% 3: 19980921 126.55 fall -31.07%, next 22 days: 4.95%, next 250 days: 44.56%, next 500 days: 84.65% 4: 20010921 134.06 fall -30.36%, next 22 days: 10.49%, next 250 days: -19.08%, next 500 days: 11.20% 5: 20080916 333.58 fall -32.44%, next 22 days:-32.23%, next 250 days: -2.90%, next 500 days: 12.31% Mean: -31.78%, next 22 days: -2.37%, next 250 days: 23.12%, next 500 days: 65.06%
Fall i OMXSBGI på minst 30% i løpet av 66 dager og minst 66 dager siden forrige store fall.
1: 19981005 164.18 fall -32.93%, next 22 days: 21.45%, next 250 days: 57.21%, next 500 days: 131.40% 2: 20020722 179.80 fall -30.29%, next 22 days: 5.89%, next 250 days: 8.44%, next 500 days: 39.58% 3: 20081024 248.66 fall -31.78%, next 22 days: 5.64%, next 250 days: 59.11%, next 500 days: 98.10% Mean: -31.67%, next 22 days: 10.99%, next 250 days: 41.59%, next 500 days: 89.69%
Fall i OMXC25GI på minst 25% i løpet av 66 dager og minst 66 dager siden forrige store fall.
1: 19981008 200.43 fall -25.12%, next 22 days: 12.79%, next 250 days: 19.34%, next 500 days: 93.92% 2: 20080121 421.35 fall -26.05%, next 22 days: 12.03%, next 250 days:-34.19%, next 500 days: -9.39% 3: 20081008 322.31 fall -25.64%, next 22 days: -3.70%, next 250 days: 14.93%, next 500 days: 43.66% 4: 20110822 379.96 fall -25.49%, next 22 days: 1.24%, next 250 days: 33.38%, next 500 days: 61.09% Mean: -25.57%, next 22 days: 5.59%, next 250 days: 8.37%, next 500 days: 47.32%
Etter mandagens fall er Investtechs kortsiktige hausseindekser for børsene i Norge, Sverige og Danmark er henholdsvis 6, 4 og 4 poeng. Det indikerer at vi kan stå nær en langsiktig bunn i markedet. Vi kommer tilbake med en utvidet analyse i morgen eller torsdag.
Keywords: Hausse.
[This article is not yet translated to 000. Showing untranslated version.]
Publisert 4.10.2022
Børsene i Sverige, Danmark og Norge har vært svært turbulente de siste dagene. Investtechs hausseindekser, som måler graden av optimisme og pessimisme i markedet, er tirsdag 4. oktober nær ved å utløse signaler, og i USA er allerede signal utløst. Tilsier teori og statistikk at markedet skal videre ned, eller er det nå man bør kjøpe?
Hausseindeksene måler andelen av selskapene som har gitt kjøps- og salgssignaler, og brukes for å beskrive graden av optimisme eller pessimisme i markedet. Dette er en optimismeindeks, der graden av optimisme kan gå fra null til 100 prosent.
En analyse av hausseindeksene er en viktig del av en totalanalyse av markedet. Hausseanalyse kan vise hvilket nivå optimismen hos de kortsiktige og langsiktige investorene ligger på, og om optimismen er økende eller fallende. I spesielle situasjoner, etter langvarige oppganger og nedganger, kan hausseanalyse peke ut vendepunkter i markedet.
Vi er nå i en spesiell situasjon. Basert på sluttkurs mandag, er Stockholmsbørsen ned 32 prosent siden årets topp, og Københavnsbørsen er ned 24 prosent. Oslo børs har holdt seg bra, grunnet sterke energiaksjer, men er likevel ned 12 prosent. Investtechs kortsiktige hausseindeks har falt fra høye verdier, mellom 65 og 80, til henholdsvis 16, 11 og 14 for Stockholm, København og Oslo. I USA, har hausseindeksen for Standard and Poors 500-aksjene falt til 5!
Fra å være overveiende optimister, har de kortsiktige investorene på de nordiske børsene og i USA dermed blitt veldig negative. Det er nesten slik at "siste optimist har blitt pessimist". Teori innen teknisk analyse sier at når hausseindeksene faller under ti poeng, står markedet ovenfor en langsiktig bunn. Negativiteten kan imidlertid ofte ta overhånd, og markedet kan gjerne falle ytterligere. Dermed ser man ofte på en vending opp i hausseindeksen som et mer pålitelig signal på at bunnen er nådd.
Aksjer som stiger over sin foregående topp gir kjøpssignal. Aksjer som faller under sin foregående bunn gir salgssignal. Hausseverdien er prosentandelen av aksjene med kjøpssignal og går fra 0 til 100 poeng. Hausseverdien brukes som et estimat for andelen av investorene som er positive til aksjemarkedet. |
1. Hausseverdier under 50 poeng indikerer at et flertall av investorene er negative. De har solgt på stadig lavere kurser med bakgrunn i liten tro på kursoppgang. |
2. Når hausse bryter under ti poeng, er nesten alle investorene negative. Media overstrømmes av artikler om økonomiske problemer og fall på børsene. Det er innslag av panikk og tvangssalg. |
3. Alle nyheter er negative og skulle det komme noe positivt, blir det bortforklart. Det ser virkelig mørkt ut. Investorene er inne i en depresjon. Enhver endring vil nå være positiv. |
4. Optimismen øker. Fortsatt er en stor majoritet av investorene negative og kursene er lave. Noen begynner imidlertid å ta til seg positive impulser og ny kapital kommer inn i markedet. En aksje som har falt 50 prosent, må stige 100 prosent for å komme opp dit den var. Mange aksjer har stor oppside. |
Det er svært skjelden at hausseindeksene faller under ti poeng. Siden 1998 er det bare fire tilfeller i Sverige, og seks i Norge. I Danmark er det siden 2000 fem tilfeller, mens det i Finland var syv tilfeller. Vi har her ikke telt med tilfeller der det er mindre enn en måned siden forrige gang.
Under vises statistikk for kursutviklingen henholdvis en måned, ett år og to år etterpå.
Det er altså få tilfeller. For Sverige og Norge ser vi at hausseverdier under ti poeng har vært fulgt av god oppgang på børsen, med henholdvis 43 og 33 prosent det kommende året. Danmark har gitt en liten oppgang på to prosent det første året, og opp 21 prosent etter to år. Finland har hatt svak til nøytral utvikling.
Markedet har falt mye, men vi er ikke nødvendigvis nær en bunn ennå. Flere ganger i perioden 1993-2022 har de nordiske børsene falt over 50 prosent siden toppene. Hvis børsen skal falle like mye nå, er det langt ned. Det kan imidlertid være at det meste av negative nyheter nå er priset inn, og at de mest nervøse allerede har solgt, slik at nye negative nyheter i liten grad vil påvirke kursene. Siden hausseindeksene indikerer at vi kan stå nær en langsiktig bunn, vil det da kunne være riktig å vekte opp aksjer når hausseindeksene snur opp, spesielt dersom de først har vært under ti poeng.
Selv om de nordiske børsene teknisk sett er negative, anbefaler vi langsiktige investorer å alltid være investert. Det er etter store fall vi tidligere har sett de sterkeste oppturene. Når det først snur kan det gå fort, og da er det veldig uheldig om man stå utenfor markedet.
Vi anbefaler alltid å unngå de mest volatile aksjene, de såkalte "lottoaksjene". Disse har statistisk sterkt underprester, spesielt om de allerede har falt mye, og er teknisk negative. For øvrig anbefaler vi å holde risikoeksponeringen omtrent nøytral, og altså ikke søke over i spesielt lavrisikoaksjer. Vi anbefaler å ha en litt høyere terskel enn vanlig for å bytte ut aksjer, da det i situasjoner med høy volatilitet, lettere utløses falske signaler, og aksjer lett kan reverseres på kort sikt.
Se oppdaterte verdier og utvikling til hausseindeksene her:
Keywords: Hausse.
Published in English on 16 October 2015. Norwegian original here >>
Investtech’s statistics based on three decades of data show that the Scandinavian stock exchanges rise from early winter until early summer. We have studied this seasonality in further detail below.
Investtech has calculated average price development throughout the year for the Scandinavian stock exchanges. The results are shown in the charts below. The left hand charts show the whole period for which we have data, while the right hand charts show the past ten years. The shaded areas show monthly standard deviation, which is a measurement of uncertainty.
Figure 1. Norway. Average annual return on the Oslo Stock Exchange for 1983-2015 and 2005-2015.
Figure 2. Sweden. Average annual return on the Stockholm Stock Exchange for 1987-2015 and 2005-2015.
Figure 3. Denmark. Average annual return on the Copenhagen Stock Exchange for 1998-2015 and 2005-2015.
Historically the stock exchanges in Norway, Sweden and Denmark all hit bottom in the autumn. On average the exchanges have developed neutrally in October and November, and then seen a rise in December.
The often discussed January effect seems to have become a December effect instead. The exchanges still show very positive development during winter and spring.
Figures 1 to 3 show that the standard deviation, visualised by the shaded areas, is large. This is due to variations from year to year, and October and November are no exceptions. On average, however, these months are neutral. December is the month with the least variation.
Figure 4. Return in November and December on the Oslo Stock Exchange from 1983 to 2015.
Figure 4 shows return in November and December for 1983-2015 on the Oslo Stock Exchange. Only three years have seen a fall in December in excess of three per cent. There are also 15 years with a rise in excess of three per cent. On average the rise has been 2.8 per cent and December has ended positively for nine of the last ten years.
Figure 5. Return in November and December on the Stockholm Stock Exchange from 1987 to 2015.
Figure 5 shows return in November and December for the years 1987-2015 on the Stockholm Stock Exchange. There are only two years with a fall in December in excess of three per cent. There are also ten years with a rise in excess of three per cent. On average the rise has been 1.9 per cent and December has ended positively for nine of the past ten years. November has also been a very positive period on the Stockholm Exchange, with an average rise of 2.1 per cent since 1987.
Figure 6. Return in November and December on the Copenhagen Stock Exchange from 1998 to 2015.
Figure 6 shows return in November and December for 1998-2015 on the Copenhagen Stock Exchange. There are two years with a fall in December in excess of three per cent, and five years with a rise in excess of three per cent. On average the rise has been 1.7 per cent and December has ended positively in seven of the past ten years.
October and November have statistically been good months to buy into or buy more on the Scandinavian stock exchanges.
If the Scandinavian exchanges follow the same pattern as in an average year, the coming weeks will be a good time to buy stocks.
Investors who have been out of the market or not fully invested recently, may find this a good time to increase their holdings. There are large fluctuations ahead, but statistically moving upwards more than downwards.
Publiceret d. 26. april 2016
Investtechs modelporteføljer har givet gode resultater over mange år. Porteføljerne er ment som inspirationskilde til vores kunder, men kan man også følge dem med reelle penge? Vi har foretaget en analyse af resultaterne og kommer her med nogle tanker omkring praktisk brug af porteføljerne og Investtechs tjenester.
Investtechs modelporteføljer er modeller af, hvordan Investtechs analyser kan bruges af den gennemsnitlige aktiesparer. De viser, hvordan en langsigtet investor, som følger markedet aktivt fra uge til uge, kan bruge Investtechs analyser til at vælge aktier. Det kan være vanskeligt at følge modellerne direkte, og aktive investorer vil kunne foretage daglige vurderinger af markedet og måske handle oftere end i modellen. Modelporteføljerne er først og fremmest tænkt som eksempler og inspirationskilder med det formål at lære at bruge analyserne, værktøjerne og metodikken, som Investtech tilbyder.
I modellerne tages aktier ind og ud til sidst kendte kurs - tilsvarende slutkursen dagen før. Vi har set, hvordan det nogle gange kan være vanskeligt at få handlet aktierne til de samme kurser, som bruges i modellerne.
Vi tror, at der særligt er to grunde til dette. For det første er det næsten altid teknisk positive aktier, der tages ind i porteføljerne. Ifølge Investtechs forskning vil disse statistisk stige fremover. Sådanne aktier fortsætter med at stige, og de gør det bedre end børsen. Det er netop grunden til, at de tages ind i porteføljerne.
En anden grund kan være, at Investtechs analyser, og valg af aktier til modelporteføljer, i nogen grad påvirker adfærden hos investorerne. Hvis nok ønsker at købe en aktie, der bliver trukket frem, vil balancen mellem købere og sælgere af aktien forandres med det følge, at køberne må op i pris for at få loft i aktierne, som de ønsker.
Figurerne herunder viser teoretisk annualiseret afkastning på investtechs modelporteføljer afhængig af, hvornår man handler.
Forklaring: Annualiseret afkastning (årlig gennemsnitsafkastning) på y-aksen som resultat af handelstidspunkt på x-aksen. Sidst kendte slutkurs bruges i Investtechs porteføljer. Dette tilsvarer 0 i grafen. Handel på næste dags åbningskurs - tilsvarende første mulighed, hvis man skulle følge modellen direkte - modelleres som 0,5 i grafen. Derefter kommer 1, som er næste sluttkurs, 1,5 som er næste åbningskurs, og så videre.
Blå prikker er før omkostninger, og grønne er efter 0,2 procent i omkostninger ved køb og salg. Den røde linje angiver referenceindeksets afkastning.
Gennemsnittet for de fire nordiske børser viser, at modelporteføljerne har givet en teoretisk årlig merafkastning før omkostningerne på 12,5 procentpoint ved handel til sidste slutkurs. Dette falder til 8,9 procentpoint ved handel til slutkurs på dagen for publicering. Hvis man handler til slutkursen en uge frem i tid, vil den gennemsnitlige årlige merafkastning være 9,3 procentpoint. Gennemgår vi graferne, ser vi, at afkastningen i gennemsnit er lavest ved handel til slutkurs cirka to dage efter publicering, mens den så stiger lidt igen ugen efter. En mulig forklaring på dette kan være, at aktierne, som indgår i modelporteføljerne, får en overreaktion de første dage, men at de så falder noget tilbage igen.
Det ser dermed ud som om, at handel så hurtigt som muligt i løbet af den første dag efter publicering giver de bedste resultater. Dette gælder vel at mærke, hvis man får handlet uden at måtte presse kurserne for meget. Hvis man ikke får gjort dette, kan man også opnå gode resultater ved at handle aktier omkring en uge efter publiceringen.
I modellerne indgår aktier med en daglig omsætning ned mod rundt regnet én million kroner. Dette kan være lavt for enkelte investorer, eller det kan kræve tid for at få gennemført handlerne. Vi har set på, hvordan teoretisk afkastning på Investtechs modelporteføljer varierer med krav til minimumslikviditet.
Figuren viser annualiseret afkastning som resultat af minimumslikviditet. Aktier, der har likviditet lavere end værdien på x-aksen i millioner kroner omsat per dag, bliver udeladt fra porteføljen. Blå prikker er før omkostninger, og grønne er efter 0,2 procent i omkostninger ved køb og salg. Den røde linje angiver referenceindeksets afkastning.
Vi kan se, at modelporteføljerne stort set har givet de bedste teoretiske resultater, når der ikke stilles krav til minimumslikviditet. Da vil alle aktierne, der er med i de oprindelige porteføljer, være med. Ser vi på de fire grafer samlet, anses der for at være en klar, men svag, negativ sammenhæng mellem årlig afkastning og minimumslikviditet. Modellerne har imidlertid givet gode resultater uanset likviditetskrav.
Det kan være vanskeligt at følge Investtechs modelporteføljer direkte. Specielt vil det kunne være vanskeligt selv at komme ind og ud af mindre likvide aktier på kort tid. Men det er heller ikke afgørende selv at komme ind og ud hurtigt. Teoretisk set får man bedre resultater ved at handle fire til seks dage efter publicering end ved at handle på dag to. Derved er resultaterne omtrent lige så gode, som hvis man handler til slutkurs på dagen for publicering.
I de 15 år, Investtech har publiceret modelporteføljer, har den teoretiske årlige gennemsnitsafkastning, ved handel på næste dags slutkurs og ved handel på slutkurs fem dage frem i tid, ligget omkring ni procentpoint højere end børsens referenceindekser. Handel til åbningskurs på dagen for publicering har ligget omkring to procentpoint højere. Hvis man prøver at købe store poster ved åbningen, må man imidlertid skulle regne med at presse kurserne.
De bedste resultater er teoretisk set blevet opnået ved, at man ikke stiller nogle krav til likviditet, men også handler de mindst likvide aktier. Med modelporteføljernes strategi og praksis svarer dette til aktier med en gennemsnitlig dagsomsætning ned mod én million kroner.
Investtechs modelporteføljer opdateres kun én gang om ugen. De kan dermed ikke tage aktier med købssignaler ind så hurtigt, som det måske ønskes, og heller ikke tage porteføljeaktier med salgssignaler ud før næste opdatering. Ved at følge børsen fra dag til dag, vil investorer have mulighed for at få solgt taberaktier hurtigt, og gå ind i aktier med købssignaler tidligt. Dette er et forhold, der gør, at reelle investorer kan gøre det bedre, end hvad modellen indikerer.
Denne artikel er baseret på en forskningsrapport med flere detaljer og analyser.
Strategien bag Investtechs model- og traderporteføljer er i stor grad bygget omkring Investtechs forskningsresultater fra de nordiske aktiemarkeder. Du kan læse mere om disse på vores Forskningssider.
Resultaterne, der måske er de aller vigtigst i porteføljerne, er disse:
Keywords: Analyse,avkastning,Helsingfors,Kjøpssignal,København,Modellportefølje,Oslo,statistics,statistikk,Stockholm.
Investtech guarantees neither the entirety nor accuracy of the analyses. Any consequent exposure related to the advice / signals which emerge in the analyses is completely and entirely at the investors own expense and risk. Investtech is not responsible for any loss, either directly or indirectly, which arises as a result of the use of Investtechs analyses. Details of any arising conflicts of interest will always appear in the investment recommendations. Further information about Investtechs analyses can be found here disclaimer.
The content provided by Investtech.com is NOT SEC or FSA regulated and is therefore not intended for US or UK consumers.
Investtech guarantees neither the entirety nor accuracy of the analyses. Any consequent exposure related to the advice / signals which emerge in the analyses is completely and entirely at the investors own expense and risk. Investtech is not responsible for any loss, either directly or indirectly, which arises as a result of the use of Investtechs analyses. Details of any arising conflicts of interest will always appear in the investment recommendations. Further information about Investtechs analyses can be found here disclaimer.
The content provided by Investtech.com is NOT SEC or FSA regulated and is therefore not intended for US or UK consumers.